Algebra 2 (Last Packet)

Day	Date	Video	Assignment Due	Is it done?
Monday	5/18/2020	11.2	467: 1-14 (sheet to replace 3c/3d/4c/4d)	
Tuesday	5/19/2020	11.3	473: 1-34, skip 3's	
Wednesday	5/20/2020	11.4	479: 1-43, skip 3's	
Thursday	5/21/2020		485: 1-24 even	
Friday	5/22/2020	PT	practice test chapter 11	
Monday	5/25/2020	NO SCHOO	OL .	
Tuesday	5/26/2020		Chapter 11 Test	
Wednesday	5/27/2020	PF	Practice Final - Chapters 1-4 (1st half to 28)	
Thursday	5/28/2020	PF	Practice Final - Chapters 1-4 (2nd half to 55)	
Friday	5/29/2020		Take Final Exam Part 1	
Monday	6/1/2020	PF	Practice Final - Chapters 5-8	
Tuesday	6/2/2020		Take Final Exam Part 2	
Wednesday	6/3/2020	PF	Practice Final - Chapters 9-11	
Thursday	6/4/2020		Take Final Exam Part 3	
Friday	6/5/2020	nothing - t	here would have been no math this day	
How many to	tal did you d	l o:		-

Zoom session happen Mon/Wed/Fri at 2:30 for those needing any help

	31 /~	w .
1	473: 1-34. Stip x 5. NW, M1222	<u>, </u>
W.	Pulgnomial of deper n ca- be factored	7.55
4.	into a factors	
: <u></u>	Pay -= 3x4 -15x3+18x2 +12x 24	0
	$= 3(x-2)^{3}(x+1)$	
	RCUTS: 2 of multiplienty 3	
	-1 of multiplicity 1	
	Toas / Reef	
	FIND A POLYNOMIAN OF DECREE 3 WITH	
STARS	-1,2, A~0 5 AS ROUTS	1
FARRA WITH		
ALL SIG	Foil .	4
	IF A COMPLEX NUMBER IS A ROLT, S.	1
	IS ITS CONJULATE (SHITCH SIGN of i)	1
27411 A 22	7+2;	1
	GET O-E PRES	<u>।</u> ः
	5 1 -> -5 1	
	2+(3i -> 2-13i	_
		-1
	IF 9 + CVB is A ROUT, SI IS CONSVIATE	<u> </u>
	(CLITCH SIGN OF FORT	7
	2+13 - 2-13	7

FUND A PULTRUMIAL OF L-MEST PECKEE
WITH 1-SC AND 1+2: AS RECTS

1452, 1-2i Auso ROUTS (8060)

NOW MAKE & FACTURED - START WITH X, SWITCH AM

SIGNS

- (X-1+52) (X-1-52) (X-1-2i) (X-1+2i). FA

- (X-1+52) (X-1-52) (X-1-2i) (X-1+2i). NUMBERS

= X4-4x3+8x2-8x-5

 $(x+i) (x-i) = x^{2}+1 \qquad (01)$ $(x+i) (x-i) = x^{2}+1 \qquad (01)$

 $x^{3}-2x^{2}+x-2$ x^{3} $-2x^{2}-2$ $-2x^{2}-2$

 $(x^2 + 1) (x + 2)(x - 1)$

PONT X OLT ODD

Myz

\$3 	479:1-43 skip x 3 Don't x	oct -010.	- W-
		•	151-#
77.80	P(x) = 3x9 -11x3 +10x -4	UST FARIOUS	
	PUSSIBLE ROUTS: = (1,2,4, =	MAKE FRANCIS	-1 B7
	•	Paine ALL COM # FROM WST	rhos of
· ·	·	TOP OF # FA	COM
	$P(x) = 2x^{4}7x^{3} - 35x^{2} + 13x $	3	
V.	1,2	1.3	
	0,000 - t/1,3 1 3)		
-	PUSSIBLE 20075 : ± (1,3, \frac{1}{2})	<u> </u>	
7-	ID() 3 (2		*
	P(x) = x3+6x2+x+c. f,	THE ROLTS	
	7655181LITIES: ± (1,2,3,6)	CHOLK ONET	8.8
		NORTHET IF	
	-6 1 C 1 C	Problem 11 Au 10517	
	-C C -C	•	100-1
16.5 16.01	1 0 1 0	,	
	· •	· 6 -	42,12
	x2+1=c		(4.5°)
-	x : - 1		
11.5			
FACT : VALLANCE ~	Y = 1/-1		
of sing lives	7,-7		
NOSSIBLE PRINCES			
10551 ALE PISTANCE	4,2000 (-6, 7, -7)		
FRI: 16 Yau			
SUMMER OF S.			- 1
and Answer			
4- NO	4 N 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		

CANDE STOPE

No grange from

x4 + x2 + 5x1 C = (1,2,3) 6 ĺ - 3: - 3 -6 C

NO RATIONAL ESCTS

36

37

-222

-6

-د

of THE possibles horker.

Is the number a root? (5)

1. 1, of
$$x^3 + 6x^2 - x - 30$$

2. 2, of
$$x^3 + 6x^2 - x - 30$$

3. 3, of
$$x^3 + 6x^2 - x - 30$$

4. -1, of
$$x^3 + 6x^2 - x - 30$$

5.
$$1 + i$$
, of $x^3 - 2x^2 + 2x$

Is the polynomial a factor? (5) 6. x - 1, of $x^3 + 6x^2 - x - 30$

7.
$$x - 2$$
, of $x^3 + 6x^2 - x - 30$

8.
$$x - 3$$
, of $x^3 + 6x^2 - x - 30$

9.
$$x + 1$$
, of $x^3 + 6x^2 - x - 30$

10.
$$x + 2$$
, of $x^3 + 6x^2 - x - 30$

.....

....

Divide. Find the quotient and the remainder. (5)	
11. $x - 2$ into $x^3 + 5x^2 - 2x - 1$	
12. $x + 2$ into $x^3 + 4x^2 - 4$	
13. $x - 3$ into $x^3 + 3x^2 - 4x - 18$	
4. $x + 2$ into $x^3 + 2x^2 - 5x - 12$	· · · · · · · · · · · · · · · · · · ·
$5. x - 4 into x^3 + 6x - 10$	

Use synthetic division to find the function values of $P(x) = x^3 + 6x^2 - 5x + 4$. (3)

16. P(3)

17. P(6)

18. P(-2)

Factor the polynomial to solve the equation P(x) = 0. (5)

19.
$$x^3 + 4x^2 + x - 6$$

20.
$$x^3 - 6x^2 + 3x + 10$$

21. $x^3 - x^2 - 14x + 24$

22. $x^3 + 2x^2 - 5x - 6$

23. $x^4 - x^3 - 19x^2 + 49x - 30$

Find the roots of each polynomial and state the multiplicity of each. (2)	
24. $(x+4)^2 (x-5)^3$	
25. $x^2(x-1)(x+6)^3$	
Find a polynomial of degree 3 with the given roots. Do not multiply out. (2)	
26. 2, -3, 4	
27. 2, i, -i	
Suppose a polynomial of degree 6 with rational coefficients has the given roots. Find	the other roots. (2)
28. 2, 3, 4i, 2 - 5i	
29. 5, 6, $\sqrt{3}$, $3-\sqrt{2}$	
Find a polynomial of lowest degree that has the given numbers as some of its roots.	Do not multiply out. (2)
30. 2, -3i, $1-\sqrt{5}$	
31. 5, $3+\sqrt{7}$, $2+2i$	
Given that the polynomial has the given root, find the other roots. (5)	
32. $x^4 - 5x^3 + 7x^2 - 5x + 6$; i is a root	

33.	x ⁴	_	16:	2 i i	is	a	root
			10,		•••	**	

34.
$$x^3 + 8$$
; -2 is a root

35.
$$x^3 - 4x^2 + x - 4$$
; -i is a root

36.
$$x^3 - x^2 - 7x + 15$$
; -3 is a root

List all of the possible rational roots. (2)

37.
$$2x^4 - 5x^3 + 7x^2 - 5x + 3$$

38. $4x^4 - 5x^3 + 7x^2 - 5x + 5$

Find the rational roots, if they exist, of each polynomial. If possible, find the other roots. (3)

39.
$$x^3 + 3x^2 - 2x - 6$$

40.
$$x^3 - x^2 - 3x + 3$$

41.
$$x^3 + 3x^2 - x - 3$$

Find	only	the	rational	roots.	(3)
T. THINK	UMIJ	шс	1 ALIVUAL	1 Onf2	v,

43.
$$x^5 - 5x^4 + 5x^3 + 15x^2 - 36x + 20$$

44.
$$x^3 - x^2 - 4x + 3$$

Name ____

7. x + 4, of $x^3 - 5x^2 - x + 5$

Name

Is the number a root?

1. 1, of $x^3 - 5x^2 - x + 5$

Test, Algebra 2, Chapter 11

2. 2, of $x^3 - 5x^2 - x + 5$

3. 3, of $x^3 - 5x^2 - x + 5$

4. -1, of x^3 - $5x^2$ - x + 5

5. 1 - i, of $x^3 - 2x^2 + 2x$

Is the polynomial a factor? 6. x - 1, of $x^3 - 5x^2 - x + 5$

8. x - 5, of $x^3 - 5x^2 + 9x - 5$

9. x + 1, of $x^3 - 5x^2 - x + 5$

10. x - 4, of $x^3 - 5x^2 - x + 5$

Divide. Find the quotient and the remainder. 11. x - 3 into $x^3 + 7x^2 - 6x - 5$

12. x - 4 into $2x^3 + 3x^2 - 4$

Find the roots of each polynomial and state the multiplicity of each.	
22. $(x+7)^5(x-4)^2$	
23. $x^3 (x-2) (x+5)^4$	
Find a polynomial of degree 3 with the given roots. Do not multiply out.	
24. 2, -3, 4	
25. 3, 5i, -5i	
Suppose a polynomial of degree 6 with rational coefficients has the given roots. Find the other roots	•
26. 1, -4, i, 2 - $\sqrt{5}$	
271, 2, -2i, $3-\sqrt{7}$	
Find a polynomial of lowest degree that has the given numbers as some of its roots. Do not multiply	out.
28. 2, -2i, $1-\sqrt{3}$	
291, $3+\sqrt{2}$, $2+4i$	
Given that the polynomial has the given root, find the other roots. (2 points each)	
30. $x^4 + x^3 - x^2 + x - 2$; -i is a root	
31. x^4 - 16; 2i is a root	
22 -3 27: 2 :	
32. x^3 - 27; 3 is a root	

List	all	of	the	possible	rational	roots.
TITOL	STEE	V.		hossinic	iauvuai	I OATS

33.
$$5x^4 - 5x^3 + 7x^2 - 5x + 2$$

34.
$$6x^4 - 5x^3 + 7x^2 - 5x + 4$$

Find the rational roots, if they exist, of each polynomial. If possible, find the other roots. (2 points each)

35.
$$x^3 - x^2 - 4x + 4$$

36.
$$x^3 + 3x^2 - 5x - 10$$

37.
$$x^4 - 3x^3 - 20x^2 - 24x - 8$$

Find only the rational roots. (2 points each)

38.
$$x^5 - 3x^4 - 3x^3 + 9x^2 - 4x + 12$$

39.
$$x^3 - x^2 - 4x + 3$$

Name _____

Final Exam, Algebra 2

Chapter 1

1. Evaluate the expression 6x + 5y - 4z when x = 7, y = 11, and z = 9.

2. What is |15-22+6|

THEFT

3. -16 + (-24) =

(calculator not allowed)

4. -22 - 7 =

(calculator not allowed)

 $5.\frac{2}{7}\cdot(-\frac{6}{11}) =$

(calculator not allowed)

6. **-28** ÷ 4 =

(calculator not allowed)

Multiply or divide and simplify.

7. $x^4 \cdot x^{-3}$

.....

 $8.\frac{18x^7y^{-2}}{9x^{-5}y^4}$

Simplify.

9. $(x^5)^5$

...

Convert to scientific notation.

10. 765 000 000 000

Convert to decimal notation.

11. 5.234 x 10 ⁻⁵

Multiply or divide in scientific notation

12.
$$\frac{8 \times 10^6}{4 \times 10^4}$$

13. $(3 \times 10^{-8})(6 \times 10^{-7})$

Chapter 2

Solve.

$$14. x - 4 = 17$$

.....

15.
$$6x - 2 = 46$$

16.
$$\frac{1}{4}x + \frac{3}{8} = \frac{5}{8}$$

Write an equation and then solve the problem.

17. Find three consecutive odd integers such that the sum of the two times the first, three times the second, and four times the third is 103.

Solve the formula.

18.
$$A = lw$$
, for w

19.
$$A = \frac{1}{2}h(a+b)$$
, for a

Graph the inequality.

20.
$$x \le 7$$

Solve the inequality.

21.
$$x + 4 < 7$$

$$22, 2x-5 > 6x-11$$

Set m	n an	equation	for	the	word	nmblem	and	then	entve	it
Det m	y au	CHRESTON	101	the.	word	hi onicini	auu	LIICI	POTAC	14

23. On three tests, you score 92, 85, and 88. To get an A, you need a total of 360 points on four tests. What scores on the last test will give you an A?

Graph the compound inequality.

24.
$$-2 < x \le 3$$

Solve the compound inequality.

25.
$$3 < 5x + 8 < 23$$

Solve.

26.
$$|x| = 6$$

27.
$$|x+5| > 6$$

28.
$$|2x+3| < 7$$

Chapter 3

Put all equations of lines in slope-intercept form.

- 29. Plot the following points on graph paper: {(2, 1), (-2, 1), (-2, -1), (2, -1)}.
- 30. Is (2,3) a solution of y = 4x 5?
- 31. Graph the equation y = 2x 2 on graph paper.
- 32. Is this a function?

- 33. f(x) = 3x 4. What are f(-1), f(0), and f(1)?
- 34. What are the intercepts of the equation 2x + 8 = 4y?
- 35. Find the slope of the line containing the points (8,1) and (-2,-4).
- 36. What is the slope of the line x = 2?
- 37. What is the slope of the line y = -1?
- 38. Find the equation of the line through (2,3) with slope 3.
- 39. Find the equation of a line through (4,5) and (5,9).
- 40. Find the slope and y-intercept of the line y = -3x + 7
- 41. Write an equation of a line with slope 5 and y-intercept (0,-8)
- 42. Are the lines y = -3x + 5 and y = -3x + 5 parallel?
- 43. Write an equation of a line parallel to 4x + y = 12 through (3,2)
- 44. Are the lines 3x + 7y = 9 and 7x 3y = 6 perpendicular?
- 45. Write an equation of a line perpendicular to 6x + 3y = 9 through (2,5)

			Ch	apter 4			
Solve	each system of equ	ations graphically. Us	se graph paper and	i use each space as on	e unit.		
46 .	5x + 3y = 15						
	4x + 2y = 12			-			
Solve	each system of equ	ations using the subst	itution method.				
47 .	5x + 6y = -28						
	x + 5y = -17			-	· · · · · · · · · · · · · · · · · · ·	···	
Calua .	and sustant of assu	odione veino dhe eddid	1				
48.	2x + 3y = -8	ations using the addit	ion metnoa.				
70,	2x + 3y = -3 $3x - 4y = 5$						
	5x - 4y - 5			_	- · · · · · · · · · · · · · · · · · · ·		
		d 100 pens and pencils	s, pens at 25 cents,	and pencils at 15 cents	. In all \$20.00 was made.	How many of each	1
were s	old.						

system:

solution:

Solve	the	system	of	equations.
SOUTH	HIL	System	V	cdammerons.

50.
$$2x + 3y + 4z = 11$$

 $4y + 5z = 14$
 $2z = 4$

51.	x + y +	z = 6
	x + y	= 4
	v +	z = 4

Write a system of equations and solve the system.

52. On the Cheswick Charger basketball team there are three players who can score, Andy, Breyon, and Crey. When all three play, they score 50 points. When Andy and Breyon play, they score 40 points. When Breyon and Crey play, they score 30. How many points can be scored by each player individually?

System:	
Salustianu	
Solution:	

Graph the inequalities on graph paper. Use each space as 1 unit.

53.
$$y < 2$$

$$54. y \ge 2x - 1$$

55.
$$y < x$$

$$y > -2x + 4$$

Chapter 5

Add

1. $2x^2 - 3xy^2 - 4xy + 5y - 6$ and $-9x^2 - 8xy^2 + 7xy + 6y - 5$

Subtract.

2.
$$(6x^2 + 7xy^2 - 8xy - 9y + 10) - (-8x^2 + 7xy^2 - 6xy + 5y - 4)$$

Multiply.

3.
$$(4x+6y+8)(3x+5y+7)$$

4. (2x + 5)(4x + 7)

5.
$$(x+1)^2$$

6. (2x + 7)(2x - 7)

Factor.

 $7.x^2 + 8x + 12$

 $8. x^2 - 36$

 $10.\ 3x^2 + 17x + 10$

11. qx + qy - rx - ry

Factor completely.	
12. y ⁶ - 64	
13. y ⁴ - 16	
Solve each problem by writing and solving an equation.	
14. Four times the square of a number is twenty-one more than eight times the number.	What is the number?
15. A flower bed is 5 meters longer than it is wide. The flower bed will have an area of	150 square meters. What are the length and width of
the flower bed?	
Chapter 6	
Multiply and simplify.	
16. $\frac{x^2-9}{x^2} \cdot \frac{x^2-4x}{x^2+x-12}$	
16. $r^2 \cdot r^2 + r - 12$	

Divide and simplify.

17.
$$\frac{x^2 - 16}{x + 2} \div \frac{x - 4}{x + 2}$$

Find the LCM of

18. 9 and 18

19. 4
$$x^4 y^3$$
 and 5 $x^3 y^3$

Add or subtract

$$20. \quad \frac{4+x}{x} + \frac{2x}{x}$$

21.
$$\frac{x-3}{x+4} + \frac{x+4}{x-6}$$

Simplify.

22.
$$\frac{\frac{1}{x} + 5}{\frac{1}{x} - 4}$$

23.
$$\frac{\frac{y^2 - y - 6}{y^2 - 5y - 14}}{\frac{y^2 + 3y + 2}{y^2 - 6y - 7}}$$

Divide.

$$24. \quad \frac{20x^8 - 28x^6 + 32x^4}{4x^4}$$

Solve.

25.
$$\frac{1}{4} - \frac{5}{6} = \frac{1}{x}$$

26.
$$y + \frac{9}{y} = 10$$

Solve	the	prob	em

27. Crey can complete a job in 8 hours. Emily can do the same job in 4 hours. How long will it take them to do the job working together?

28. One car travels 10 km/h faster than another. One travels 480 km in the time that the other travels 400. How fast are the two cars going?

Solve the formula for the given letter.

29.
$$\frac{W_1}{W_2} = \frac{d_1}{d_2}; W_2$$

30.
$$\frac{1}{p} + \frac{1}{q} = \frac{1}{f}; q$$

Chapter 7

31. What are the square roots of 16?

Multiply and simplify.

32.
$$\sqrt{5}\sqrt{15}$$

....

Divide and simplify.

33.
$$\sqrt{\frac{49}{16}}$$

Add or subtract.

34.
$$7\sqrt{3} - 5\sqrt{3}$$

Multiply.

35.
$$(\sqrt{2}-2\sqrt{5})(2\sqrt{2}+\sqrt{5})$$

Rewrite without fractional exponents.

36.
$$x^{\frac{5}{7}}$$

Rewrite with fractional exponents.

37.
$$\sqrt[7]{x^2}$$

Rewrite with positive exponents.

38.
$$x^{-\frac{3}{5}}$$

.....

Use the properties of exponents to simplify.

39.
$$5^{\frac{1}{2}} \cdot 5^{\frac{2}{3}}$$

40.
$$(x^{\frac{2}{5}})^{\frac{1}{5}}$$

Write a single radical expression.

41.
$$\frac{\sqrt[5]{x^4}}{\sqrt{x}}$$

Solve	the	radical	ea	nation.
DOI 1 C	THE C	IMUICAL	vu	uativu.

$$42. \quad \sqrt{x+3} = 8$$

43.
$$\sqrt{x-9} + \sqrt{x} = 9$$

Express in terms of i.

Multiply.

46.
$$(7+5i)(7-5i)$$

Find the conjugate.

47.
$$9 + 3i$$

Find the reciprocal.

48.
$$3 + 7i$$

Divide.

49.
$$\frac{3+4i}{5-6i}$$

Our favorite problem of the year: If z is a complex number, find a polynomial in \overline{z} that is the conjugate. 50. $z^2 - 2z - 3$

50.
$$z^2 - 2z - 3$$

51. State the Quadratic Formula.

Solve by any method you choose.

52.
$$x^2 + 5x + 6 = 0$$

53.
$$x^2 - 3x = 0$$

54.
$$x^2 + 9 = 0$$

55.
$$x^2 - 4x + 13 = 0$$

$$56. \ x^2 - 3x - 6 = 0$$

57.
$$x^2 + 16x + 64 = 0$$

58.
$$x^2 - 36 = 0$$

Solve by substituting.

$$59. \ x^4 - 10x^2 + 25 = 0$$

60.
$$x - 6\sqrt{x} - 16 = 0$$

....

Chapter 9

Is the figure symmetric to the given line and to the given point? Answer yes or no.

1.

Test for symmetry to the x-axis and the y-axis. Answer yes or no.

$$2. \ 3x^2 + 4y = 6$$

Test for symmetry with respect to the origin. Answer yes or no.

3.
$$3x = 6y$$

Determine whether each function is even, odd, or neither.

4.
$$f(x) = x^4 + x^8$$

5.
$$f(x) = x^6 + x^3$$

Tell how the graph of f(x) would be transformed.

6.
$$1 + f(x)$$

8.
$$f(4x)$$

Graph on graph paper.

10.
$$y = |x - 5|$$

11.
$$y = 6 + \frac{1}{3}|x|$$

12.
$$y = 2x^2$$

13.
$$y = -(x-3)^2$$

14.
$$f(\frac{1}{2}x)^2$$

Find	the	vertex.	line	of	symmetry.	and	the	may	۵r	min
R. HILL	CHIL	TOI ICA,	Time	VI	symmetry,	anu	шс	ZKID	ŲΓ	min.

15.
$$f(x) = (x+2)^2 + 4$$

Complete the squareto get an equation in the form $f(x) = a(x - h)^2 + k$.

16.
$$f(x) = x^2 + 3x + 2$$

Find the x-intercepts.

17.
$$f(x) = x^2 - 6x + 5$$

18.
$$f(x) = x^2 + 2x + 3$$

Chapter 10

Find the distance between the points.

19. (3,2) and (0,2)

Find the midpoint of the segments having the following endpoints.

Find the center and the radius of the circle.

21.
$$x^2 + y^2 = 7$$

22.
$$x^2 + y^2 + 6x - 4y - 15 = 0$$

Write an equation for a circle with.	
23. center (-2,3) and radius $\sqrt{6}$	
Find the center, vertices, and foci. 24. $\frac{x^2}{9} + \frac{y^2}{16} = 1$	
Put the equation for each ellipse in standard form.	
25. $4x^2 + 9y^2 - 16x + 18y - 11 = 0$	
Graph an ellipse with 26. center (4,1) vertices (6,1), (2,1), (4,2), and (4,0) foci $(4+\sqrt{3},1)$ and $(4-\sqrt{3},1)$	
Find the center, vertices, foci, and asymptotes.	
$27. 9y^2 - 4x^2 = 36$	
center:	
vertices:	
foci:	
asymptotes:	
Put the equation for each hyperbola in standard form.	
$28. \ 4x^2 - y^2 + 24x + 4y + 28 = 0$	

Graph the hyperbola

29. number # 27

Find the vertex, focus, and directrix of the parabola.

30.
$$(y-5)^2 = -12(x+7)$$

vertex:

focus:

directrix:

Put the equation of a parabola in standard form.

31.
$$x^2 + 6x + 4y + 5 = 0$$

Write an equation of a parabola satisfying the given conditions.

32. Focus (0,4) directrix y = -4

Graph a parabola with

33. vertex (0,0)

focus (0,1)

directrix y = -1

34. vertex (-4,-3)

focus (-2,-3)

directrix x = -6

Solve using the substitution method, the addition method, or by graphing.

$$35. \frac{y = x^2}{3x = y + 2}$$

$$36. \quad x^2 + y^2 = 32$$
$$x^2 - y^2 = 0$$

$$x^2 + y^2 = 17$$

$$xy = 4$$

Chapter 11

Is the number a root?

38. 1, of
$$x^3 - 6x^2 + 11x - 6$$

Is the polynomial a factor?

39.
$$x - 1$$
, of $x^3 - 6x^2 + 11x - 6$

40.
$$x + 2$$
, of $x^3 + 6x^2 + 11x + 6$

Divide. Find the quotient and the remainder.

41.
$$x - 2$$
 into $x^3 + 7x^2 - 6x - 5$

42.
$$x - 3$$
 into $2x^3 + 3x^2 - 4$

Use synthetic division to find the function values of $P(x) = x^3 + 2x^2 - 3x + 4$. 43. P(2)

Factor the polynomial to solve the equation $P(x) = 0$.	
44. $x^3 + 2x^2 - 13x + 10$	
45. $x^4 + 11x^3 + 41x^2 + 61x + 30$	
	Ac.
Find the roots of each polynomial and state the multiplicity of each.	
46. $(x+2)^4 (x-3)^2$	
Find a polynomial of degree 3 with the given roots. Do not multiply out.	
47. 3, 2i, -2i	
Suppose a polynomial of degree 6 with rational coefficients has the given roots. Fin	d the other roots.
48. 1, -4, i, $2 - \sqrt{3}$	
حد وه رم حدد الم	

Find a polynomial of lowest degree that has the given numbers as some of its roots.	Do not multiply out.
49. 2, $-2i$, $1-\sqrt{5}$	
Given that the polynomial has the given root, find the other roots.	
50. $x^4 + x^3 - x^2 + x - 2$; i is a root	
51. x^3 - 8; 2 is a root	

List all of the possible rational roots.

52. $3x^4 - 5x^3 + 7x^2 - 5x + 2$

Rind	the retional mos	a if they av	st, of each polynomial.	If manailala	Mary 3 Alban a Albana a secondar
r. Hr.	THE LANGUAL LOOP	э, и шсу са	ist, of excit boldinounist.	II DOSSIDIE.	. Hind the other roots.

53.
$$x^3 - x^2 - 3x + 3$$

54.
$$x^4 - 3x^3 - 20x^2 - 24x - 8$$

Find only the rational roots.

55.
$$x^5 - 3x^4 - 3x^3 + 9x^2 - 4x + 12$$

