Algebra 1

	Day	Date	Video	Assignment Due	Is it done?
33	Monday	5/4/2020	9.7	399: 3-22	
34	Tuesday	5/5/2020		403: 1-31 [GRAPH 11-31]	
35	Wednesday	5/6/2020	PQ	practice quiz 9.5-7	
36	Thursday	5/7/2020		take quiz - 9.5-7	
37	Friday	5/8/2020		"field trip day" - try to do something fun	
38	Monday	5/11/2020		practice test chapter 9	
39	Tuesday	5/12/2020		take test - Chapter 9	
40	Wednesday	5/13/2020	12.1-2		
41	Thursday	5/14/2020	12.4	496: 1-34; 499: 1-10	
42	Friday	5/15/2020	12.5	505: 8-31	
	Monday	5/18/2020	12.6	510: 1-18, 36	
	How many total did you do:		o:		

Zoom session happen Tues/Thurs at 2:00 for those needing any help

[NOTE - PRACTICE FINALS ALSO ARE INCLUDED IN THIS PACKET IN CASE ANYBODY WANTS TO START TO WORK AHEAD ON THOSE]

We usually do these during a school day in May. Please return this form at the 5-18 dropoff/pickup day. It helps TMR to work up a class schedule for next year. Thank you.

Name		Gı	rade Next Year	2020-21 Pre-Sche	dule Form
I expect to be			(a) 7.75		2010 1 01111
at CCA		Elsewhere		Don't Know	
Math				4	
General Math	20 <u>4-20-3</u>	Algebra 1		Trigonometry	
Pre-Algebra	31 <u></u>	Geometry	n = = = = = = = = = = = = = = = = = = =	Calculus	
French:	C.	€			
Yes	F	No		Level	
Spanish:					
Yes		No		Level	
English			5		_
Lunch Help					
9th-12th:					
Accelerated	Regul	ar			
11th/12th:	_		_		
Physics		onmental	_		
Electives (Rank	your choices starting with	1 for your first cho	oice, ranking anything you	ı think you might take)	
Art	Comp	uters	Girls Only	Speech	
Boys Only	Cook	\$	Health	Video Class	sics
Child Dev	Debat	e	Keyboarding	Worship Te	1 440
College + Caree	r Drama	1	Money Mgmt		

Find the slope and y-intercept.

1.
$$y = -5x + 1$$

2.
$$y = 3/5x + 7$$

3.
$$y = -2x$$

4.
$$3x + 4y = 7$$

Write an equation with the given slope and intercept.

Graph on graph paper

9.
$$y = 2/5 \times -2$$

10.
$$4x - 3y = 12$$

11.
$$y = -3/4 x$$

12.
$$3y = 5x$$

13.
$$y = 3x - 4$$

14.
$$y = 2x$$

Determine whether the lines are parallel. Show work.

15.
$$2y - 3x = 2$$
 and $-6x + 4y = 11$

Write an equation of the line in standard form.

18. slope is 3/4, through (1,-2)	
19. parallel to $2x + 3y = 4$, through (-5,4)	
Write an equation of the line in slope-intercept form. 20. through (1,2) and (5,7)	
21. through (-1,2) and (2,4)	
22. through (4,4) and (7,2)	
Write an inequality. 23. The graph is on graph paper	
24. The graph is on graph paper	
Graph on graph paper	
25. $x > -2$	
$26. \ y \le 3$	
$27. \ \ y \le 2/3x - 5$	
28. $y > 3x$ 29. $y \ge 3x - 4$	
30. $y < x - 2$	

Name				

Find the slope and y-intercept.

1.
$$y = 4x - 8$$

2.
$$y = -1/2 x - 3$$

3.
$$y = 4x$$

4.
$$2x + 3y = 7$$

Write an equation with the given slope and intercept.

Graph on graph paper

9.
$$y = 2/3 x + 1$$

10.
$$4x - 2y = 4$$

11.
$$y = -2/3 x$$

12.
$$2y = 3x$$

13.
$$y = -2x + 7$$

14.
$$y = 4x$$

Determine whether the lines are parallel. Show work.

15.
$$y = -3x + 2$$
 and $3x + 2y = 7$

Write an equation of the line in standard form.

18. slope is 2/3, through (-3,4)	
19. parallel to $y = 3x - 2$, through (2,-3)	
Write an equation of the line in slope-intercept form.	
20. through (1,2) and (4,7)	
21. through (1.2) and (2.4)	
21. through (-1,3) and (2,4)	
22. through (3,3) and (-6,9)	
Write an inequality.	
23. The graph is on graph paper	
24. The graph is on graph paper	
Graph on graph paper	
25. $y < 4$	
26. $x \ge 3$	
27. $y \le 3x - 4$	
28. $y > 2x$	
29. $y \ge 3x - 4$	*
30. $y < x - 2$	

1-9. Plot the points on graph paper.

Identify the intercepts

10.
$$4x - 3y = 24$$

11.
$$-2x + 3y = 24$$

Graph on graph paper.

12.
$$5x + 4y = 16$$

13.
$$x + 2y = 7$$

14.
$$y = -3x$$

15.
$$2y = 3x$$

16.
$$3y - 2x = 6$$

17.
$$x = 2y - 4$$

18.
$$y = -3x + 7$$

19.
$$5x + 3y = 12$$

20.
$$x = 3$$

21.
$$y = -5$$

22.
$$x = -4$$

23.
$$y = 3$$

Find the slope of a line through the points.

On graph paper, through the given point, draw a line with the given slope.

E24 . B	48					
r ina	tne	siope	ana	v-ın	tercer	λГ

36.
$$y = x - 2$$

slope:

inter:

37.
$$y = -3/4 x - 5$$

slope:

inter:

38.
$$y = 6x$$

slope:

inter:

39.
$$7x + 8y = 9$$

slope:

inter:

Write an equation with the given slope and intercept.

41. slope -6/5, intercept -4

42. slope 3, intercept 0

43. slope 0, intercept -2

Determine whether the lines are parallel. Show work.

$$44.9x + 6y = 2$$
 and $3x + 2y = 7$

Write an equation of the line in standard form.

45. slope is 5, through (0,0)

46. slope is -4, through (2,3)

47. slope is 3/5, through (-1,2)

48. parallel to y = 2x - 3, through (4,-5)

Write an equation of the line in slope-intercept form.	
49. through (1,2) and (3,7)	
€	
50. through (1.2) and (5.4)	
50. through (-1,3) and (5,4)	
51. through (3,3) and (-5,9)	
Write on inequality	

Write an inequality.

52. The graph is on graph paper

53. The graph is on graph paper

Graph on graph paper

54. y < -3

55. x ≥4

56. $y \le 3/4x - 5$

57. y > 2x

58. $y \ge 2/5x + 1$

59. y < x -4

60. y > 2/3x - 4

1-9. Plot the points on graph paper.

A(5,0) B(-4,2) C(0,2) D(1,-2) E(3,4) F(0,-4) G(-4,-1) H(0,0) I(-3,0)

Identify the intercepts

10.
$$-5x - 6y = 30$$

$$4x - 7y = -28$$

Graph on graph paper.

12.
$$-2x + 4y = 16$$

13.
$$x - 3y = -8$$

14.
$$y = -2x$$

11.

15.
$$3y = 2x$$

16.
$$3y - 2x = 9$$

17.
$$x = 3y - 4$$

18.
$$y = 2x - 5$$

19.
$$2x + 3y = 9$$

20.
$$y = 3$$

21.
$$x = 5$$

22.
$$y = -4$$

23.
$$x = -3$$

Find the slope of a line through the points.

On graph paper, through the given point, draw a line with the given slope.

ind	the	slope	and	v-inte	ercept.

36.
$$y = x - 5$$

slope: ____

inter:

37.
$$y = -4/3 \times 2$$

slope:

inter:

38.
$$y = 3x$$

slope:

inter:

39.
$$4x + 5y = 6$$

slope:

inter:

Write an equation with the given slope and intercept.

41. slope -3/2, intercept -1

.. stope -3/2, intercept -1

42. slope 2, intercept 0

43. slope 0, intercept -3

Determine whether the lines are parallel. Show work.

44.
$$4x + 5y = 6$$
 and $8x - 10y = 2$

Write an equation of the line in standard form.

45. slope is 7, through (0,0)

46. slope is -6, through (5,4)

47. slope is 4/5, through (-6,7)

48. parallel to y = 5x - 4, through (3,-2)

Write an equation of the line in slope-intercept form. 49. through (1,2) and (3,9)	
50. through (-1,3) and (5,8)	
51. through (3,3) and (-3,7)	
Write on inequality	
Write an inequality. 52. The graph is on graph paper	

53. The graph is on graph paper

Graph on graph paper

54. y < -255. $x \ge 3$

57. y > 3x

56. $y \le 2/3x - 4$

58. $y \ge 3/4x + 2$ 59. y < x - 360. y < 1/3x - 2

NAME		CHAPTER 9 TEST
<u>(-9)</u>	12-13	
4-16		
	(7-19)	
	34-35	
7-23)		

. 2 .		
1f x - y,	THE- X IS A SOLANE !	loct of J
> - 2)	,	25
PUSITIVE NUMBE	IS HAVE 2 SOME ROUTS	por (unapa)
NEG	0	<i>/~E&</i>
Q	l	
parion sic-		
RANCH EXPLESSION		
RADICAND = # L.		
Va - Va	+ Ja source ro	-F 9
V25. V4 = 5.2	=10 an Si00 =0	
136 I G = 2	or 54 = 2	
J64 JE	J.25 J.0009 J.77	
	0,000 7 0,000	
3/64 3/125	532	-
UM WHAT HARRY	Anotranes	
	WATER (ROWN TO TENTHS)	+ = -
	(0) (0)	
*		

WANN MANNA .

496:1-34 | 499:110

501:1-24

	501.1-21						
	FO	The state of the s					10-10-0
	F	& RADICA	7 5				
9 3					S=:	40	
	G~ 2A	PERFERT	SOLA CE	71.47	- 01	vor.s	L~
	POIT THAT						
		THER MA					
						· ·	
	fer ce-	funetes	vaz,	CUT	i~	MATE	
	900			LEAVE	ł	レへのと	ve_
		·					
	(18	Jxc					
	J20	Jx8710					
	,/32	$\sqrt{\chi^2}$					
	Szov	Jy 7					
	J480	√x ⁷ ∂ ⁴					
	2/20	J18×123					
	3 524	JRx137					
		J72 x3					
		- 85					

505:8-31

505:8:31

ADDING / SUSTINGTING: MUST HAVE LIKE MOICHS

553, 253 252, 255 -355, 555 25x, 25g 5xg, 25xg

VIO + 6 VIO

355 + 452 + 552

2 53 - 553 + 652

575 + 02527 - VIZ

J12a + 500 a

J12x3 + 2 J27x3

V-17584 (V)2

57 · 57

= RADICAND

Go own Quiz

MULTIPITIAL RADICULS

J. J = J J. # CANIT HAPPISM J4 J9 J6 J8

256 352

5 V8x · 4 JZx V=3 · J=2

254.354

V2 (5+356)

Js (2J5 + J3)

(2+357)(3-257)

(4+ 52) (S52+6) (52+53) (56+57)

514:1-28,38

Chapter 1

Evaluate each expression if a = -5, b = 6, and c = -7.

$$1. \ \frac{1}{3}(a+b+c)$$

Write an expression for each phrase.

Simplify.

.____

Add.

7. -17 + (-27)

8.
$$-\frac{1}{4} + \frac{1}{3}$$

Subtract.

.........

10.
$$\frac{1}{4} - \frac{5}{8}$$

Multiply.

12.
$$\frac{3}{5} \cdot (-\frac{20}{9})$$

Divide.

$$13. -8 \div -2$$

14.
$$-\frac{6}{7} \div (-\frac{3}{21})$$

....

Evaluate each expression if a = -4, b = -5, and c = -6.

15.
$$a - (b + c)$$

Chapter 2

Simplify each expression. Show your work.

16.
$$6+6\cdot 4 \div 10$$

$$17.25 - (9 + 5(2 + 10) \div 3)$$

Simplify.

$$19.4(2+4)^2$$

Simplify by combining like terms.

20.
$$7x + 4x$$

21.
$$2(3m+n)+3(2m-2n)$$

Simplify.

23.
$$(6x + 7) - (8x - 9)$$

24. $a + (b + c^3)^2$	
Translate each word phrase to an algebraic expression. Let $x =$ the unknown number 25. Twenty more than a number	er.
26. The product of six and a number squared	
Write an equation. Then solve the equation by checking the possible solutions. 27. JP weighs x pounds. His brother weights 40 pounds less. The sum of their weights weigh?	is 240 pounds. How much do JP and his brothe
28. The sum of a number and 8 less than that number is 16. Find the number.	
Write an algebraic equation for each sentence with x = the unknown number. 29. Five more than a number is 10.	
30. The product of 48 and a number, decreased by 7 is 5.	
Chapter 3 Solve the equation. Show your work.	
31. $x + 23 = 15$	
32. $8x = 64$	

33. $\frac{x}{9} = 4$

34. $\frac{1}{4}x = 8$

35.	4x	+	9	=	-15
00.	***	•	•		20

36.
$$x - 2.3 = 3.51$$

37.
$$5(x-3) = -60$$

38. $\frac{1}{3}x + \frac{3}{4} = \frac{5}{6}$

Identify a mathematical model for each problem. Then use the model to solve the problem.

40. Jayme bought a CD for \$15. Then she bought some posters for \$3 each. In all, she spent \$36. How many posters did she buy?

Solve each formula.

41. Solve the formula $A = \frac{1}{2}bh$ for h if A = 10 and b = 4.

Solve each problem by writing and solving an equation.

42. Increasing a number by 48 gives -19. What is the number?

43. If 8 is added to 9 times a number, the result is 89. What is the number?	
Write an equation and solve it.	
44. Fifteen increased by 9 times a number is 69. What is the number?	
Af A cost is an colo for \$100. The colo price is \$10.00 less than the court of	
45. A coat is on sale for \$109. The sale price is \$19.99 less than the regular price.	
What is the regular price?	
Chapter 4	
_	
Solve each equation.	
$46. \ \ x + 2x + 9 = 12$	**************************************
47. $-2(x-6) = -6$	
AD . E(x,) \$\ m \(\langle \) (x)	
48. $5(x+5) = 6(x+6)$	
$49. \ 5 - 6x = -4x - 9$	
Solve each problem by writing and solving an equation.	
50. Find five consecutive integers whose sum is 155.	
Jo. The ive compositive integers whose suit is 199.	
51. Find five consecutive odd integers. The sum of the first and the third is 22.	

Solve the percent problem.	
52. What number is 40% of 60?	
53. 3 is what percent of 50?	
54. 70 is 20% of what number?	
Solve the problem.	
55. The enrollment at the school increased from 200 to 240. What percent increase is that?	
56. A \$1800 computer's price is reduced by 10%. What is the new price?	
57. If the price of a \$499 television is increased by 10%, what is the new price?	
Solve each literal equation for the underlined variable.	
$58. \ \underline{\mathbf{x}} + \mathbf{y} = 7$	
59. $2(x+y)=3$	
Make a drawing and table, write an equation, and solve the equation.	
60. Two trains start out 250 mi apart. They leave at the same time, one traveling at 30	mph and the other at 20 mph. How long will it take
for them to meet?	

Name_____

Practice Final, Algebra 1

Chapter 5

Graph each equation or inequality.

1. x = 2

2. x > 4

3. x ≤ -2

Solve each inequality.

4. x + 6 < 10

5. -4x < 24

6. x/-2 < -5

7. 16(x+4) < 48

8. 7x + 9 > 5x + 8

9. 16(x+3)+8(x+2)<64

Graph each compound inequality.

10. 8 < 5x - 2 < 18

11. $10x - 23 \ge -8 \text{ or } 5x - 18 < -27$

Solve each absolute value equation or inequality.	
12. $ 4x+6 =18$	
13. $ x+5 > 5$	
14. $ x-4 < 3$	
Write and solve an inequality.	
15. An elevator can hold no more than 1700 pounds. What is the greatest number of 15	0 pound algebra students that the elevator can hold?
16. Angela's grades on four exams were 94, 93, 85, and 84. What is the lowest grade sl	se can receive on the nevt evant to have an average
greater than 90?	to call receive on the next examit to have all average
Secure time > 0	
17. The length of a rectangle is 5 feet more than the width. Find the minimum dimension	ons if the perimeter is more than 51 feet and the
length and width are integers.	

Chapter 6

Multiply.

18.
$$c^3c^4$$

19.
$$(5xy^6)(8x^5z^2)$$

Divide.

$$20. \quad \frac{x^8}{x^2}$$

$$21. \ \frac{9x^2y^3z^4}{12x^7y^3z^6}$$

Simplify.

22.
$$(x^6)^3$$

23.
$$(4xy^5z^4)^2$$

Write in scientific notation.

24, 67 000 000

25, .000 000 456

Simplify and write the answer in scientific notation.

26.
$$(3 \times 10^5)(2 \times 10^2)$$

27.
$$\frac{18 \times 10^7}{30 \times 10^3}$$

Simplify and write in descending order with respect to x.

28.
$$2(4x^3-6)-3(-5x^3+3x^2-1)-4$$

Add.

29. $(-4a^2 + 5a - 6) + (9a^2 + 8a - 7)$

Subtract

30. (5x+6) - (7x-8)

Multiply.

31. $3x^4(4x^2 + 5x + 6)$

32. (x+5)(x+4)

33. (4a+3)(3a-5)

34. (2x+5)(2x-5)

35. $(x+4)^2$

Find the prime factorization.

36. 48

37. 111

Find the GCF

38. 48, 72

Factor completely.

39. $12x^3y^3 - 4x^2y$

40. $x^2 + 8x + 12$

Chapter 7

41. $x^2 + x - 12$	
42. $x^2 - 10x - 24$	
43. $2x^2 - 3x - 5$	
44. x ² - 49	
45. $x^2 - 10x + 25$	
46. ax + ay + bx + by	
Solve the equation.	
47. $(x+5)(x-4)=0$	
48. $x^2 - 9x = 10$	
Set up an equation and solve the word problem.	
49. The area of a rectangle is 170. The length is seven more than the width. What are	the dimensions?
50. The product of two consecutive integers is 420. What are the integers?	

Chapter 8

State the restriction and simplify.

$$1. \ \frac{5x^3}{20x^2}$$

$$2. \ \frac{x^2 - 4}{x^2 - 7x + 10}$$

Multiply.

$$3. \frac{6x^2}{y^2} \cdot \frac{y^2}{2x}$$

4.
$$\frac{x^2-16}{x} \cdot \frac{5x^3}{4+x}$$

Divide.

$$5. \ \frac{3x^2}{4y} \div \frac{18x}{12y^2}$$

6.
$$\frac{x^2-4}{x-1} \div \frac{x+2}{x^2-3x+2}$$

Write equivalent expressions with the Least Common Denominator as the denominator.

7.
$$\frac{8}{x^2-3x-10}$$
, $\frac{9}{5-x}$

Add or subtract.

$$8. \ \frac{5}{4x} + \frac{11}{4x}$$

9.
$$\frac{5}{x+1} + \frac{6}{x+2}$$

Simplify each mixed expression.

10.
$$6 + \frac{7}{x}$$

Simplify each complex rational expression.

11.
$$\frac{\frac{3}{x} + \frac{3}{y}}{\frac{8}{x} + \frac{8}{y}}$$

Divide the polynomials.

12.
$$(4x^4 - 6x^2 - 12x) \div 2x^2$$

13.
$$(x^2-6x+8)\div(x-2)$$

Express as a ratio in simplest form.

14. 40 to 12

Solve.

15.
$$\frac{7}{10} = \frac{21}{x}$$

 $16. \ \frac{x+1}{5} = \frac{15}{25}$

Solve.

17.
$$\frac{1}{x} + \frac{3}{x} = 24$$

18. $\frac{2}{5x} + \frac{1}{2} = \frac{3}{10x}$

Chapter 9	
Identify the term.	
19. What is the name of the point where the axes connect?	
20. What is the name of the vertical axis?	
21. What is the name of the horizontal axis?	
22. What is slope?	
23. What is an x-intercept?	
How would you move from the point where the axes connect to graph the point	
24. (-2, 3)	
Identify the intercepts.	
25. $2x - 5y = 20$	
Graph either using intercepts or using a table.	
$26. \ 4x + 5y = 20$	
27. $y = 2/3 x + 1$	
20 v = 1	
28. $x = -1$	

What is the slope of a line through the points.

29. (2,3) and (3,5)

30. (2,4) with slope 2/3			
Find the slope and y-intercept	L		
31. $y = 6x - 5$	slope:	inter:	
Write an equation with the gi	ven slope and intercept.		
32. slope 2, intercept -1			
Graph using slope-intercept for	orm.		
33. $y = -2/3 x + 4$			
Determine whether the lines a	re parallel. Show work.		
34. $y = -3x + 2$ and $6x + 2y = 5$			
NEDIA	forther or a.		
Wite an equation of the line in	standard form.		
35. slope is -3, through (1,2)			77 7
36. slope is 2/5, through (-1,3)			
Write an equation of the line is	n slope-intercept form.		
37. through (1,4) and (2,7)			
	58		
38. through (-1,3) and (3,-1)			

Through the given point, draw a line with the given slope.

Graph.

39. x > -2

40. y < 3x - 1

Chapter 12

Do the square root.

41. $\sqrt{25}$

42. $-\sqrt{100}$

43. $\pm \sqrt{\frac{1}{4}}$

Approximate the square root to the nearest tenth.

44. √6

45. √7

Write as a decimal.

46. $\frac{2}{5}$

47. $\frac{11}{16}$

Write as a fraction.

48. ,95

49. .72

·····

······

Simplify the square root.

50. √12

51. √64

52. $\sqrt{x^7}$

53. $\sqrt{m^4n^{10}}$

Add the square roots.

54. $4\sqrt{2} + 3\sqrt{2}$

55. $2\sqrt{12} - 4\sqrt{3}$

Multiply the square roots.

56. $\sqrt{2} \cdot \sqrt{8}$

57. $4\sqrt{3} \cdot 3\sqrt{6}$

58. $(4\sqrt{3})^2$

59. $\sqrt{2}(6+\sqrt{2})$

60. $(3+4\sqrt{2})(3-\sqrt{2})$

.....