| NAME: | Earth | |-------|-------| | | R | Earth Science Review Chapter 8 ## DIRECTIONS- this is an open note/open book review of chapter 8. Please use your resources if you need too! | Matching. | | | |-----------|--------------------|---| | 1 | _ meteorology | a. movement of water from the earth's surface, into the air and back to the surface | | 2 | _ air mass | b. a standoff between air masses where neither one advances | | 3 | _evaporation | c. forms when a humid breeze blows over a cold surface causing the air's temperature to drop below dewpoint; forms day or night | | 4 | radiation fog | d. the water that falls to the earth including rain, sleet, hail, and snow | | 5 | _advection fog | e. the study of weather and of the atmospheric conditions that produce weather | | 6 | _ condensation | f. the process of a liquid becoming a gas | | 7 | _water cycle | g. a large body of air with relatively uniform temperature, humidity, and pressure | | 8 | precipitation | h. the amount of water vapor in the air | | 9 | air-mass weather | i. a Y-shaped front caused by three air masses | | 10 | _ humidity | j. the process of a gas returning to its liquid state | | 11 | _ stationary front | k. forms when air near ground cools below dewpoint & causes cloud droplets to form; forms only at night | | 12 | _occluded front | l. air mass that remains stationary over a region for a period of time continuing the same type of weather | | | | veather and climate | | | | | | | | | 15-16. On what two things do meteorologists base their classification of clouds? | 1 2 | |---| | Identify. | | 17. Artificial clouds produced by airplanes- | | 18. Layered balls of ice that form in strong thunderstorms | | 19. The term given to a mixture of smoke and fog | | 20. Particles in the air around which water condenses- | | 21. A "lens-shaped" cloud that often forms above a mountain- | | 22. Most familiar shape of snowflake- | | 23. A thunderstorm cloud- | | 24. Drops of water that form on surfaces below dewpoint- | | 25-27. Name the three major factors work together to affect earth's weather? 1 | | 3. | | 28-31. Give the Latin word for each description of these cloud categories: | | 1. "to extend; to stretch" - | | 2. "curl of hair" | | 3. "a heap" | | 4. "cloud" | | 32-35. Identify the 4 types of droughts according to their descriptions: | | 1 comparing an areas current precipitation with its typical precipitation | | 2 the supply of any product/material used by people is affected by lack of precipitation | | 3 an area's ground water, lakes, rivers, etc. are considerably decreased due to lack of precipitation | | 4 | - precipitation cannot support an area's crops | | | |---|---|--|--| | 35-37. Label the water cycle diagram. | ord description of the air mass in the chart below. | | | | AIR MASS | DESCRIPTION (2 words) | | | | 38. continental tropical | | | | | 39. | cold, dry | | | | 40. Arctic | | | | | 41 | moist, warm | | | | True and False. | | | | | 42Molecules have more energ | gy at lower temperatures. | | | | 43"Fronts" are named for the air mass advancing into the "territory" of another air mass | | | | | 44When a cold air mass is app | proaching a warm air mass, it will try to go over it. | | | | 45A stratocumulus is the most frequent type of cloud. | | | | | 46A warm front moves faster than a cold front. | | | | | 47Rime is the milky part of a hailstone that forms in the upper part of a cloud. | | | | | 48The collision-coalescence process is how rain forms in clouds with above freezing temperatures. | | | | | | | | | | BONUS! | | | | | 1. What does the size of a hailstone depo | end upon? | | | |
er density- cold o | 1857 |
,
 | |------------------------|------|-----------| | 37-702 | Review
9.1-9.2 | |---|-------------------| | DIRECTIONS-this is open book/open note. Use your resources to fill this out! | 3.1 3.2 | | <u></u> | | | 1-3. Name the three stages of a thunderstorm IN ORDER . | | | 1 | | | 2 | | | 3 | | | | | | 4-6. From the above stages of a thunderstorm | | | 1. what is stage #2 marked by? | | | 2. what has formed at the end of stage #1? | | | 7. Why do we see lightning hefere we hearthunder? | | | 7. Why do we see lightning before we hear thunder? | | | 8-9. What two ingredients are needed to form a hurricane? | | | 1. | - | | 2 | | | 10. What is the first visible sign that a tornado may be forming from a mesocyclone? | <u>_</u> | | 11. What is the difference between a tornado and a dust devil? | | | | | | | | | 12-13. What two combinations of lightning strokes give the impression of a single flickering lightning | g bolt? | | 1 2 | | | 14. What type of lightning travels from the negative region of a cloud to a positive region on the ear surface? | th's | | 15. Explain cloud-to-cloud lightning. | | | | | Earth Science NAME: _____ ## <u>Identify</u> | 16. First electron stream moving jerkily from cloud to ground- | |--| | 17. The most powerful thunderstorm | | 18. Term used for a hurricane in the Western Pacific and Indian Oceans | | 19. The smallest, most intense downburst- | | 20. The minimum temperature of ocean water needed for hurricane formation | | 21. Swirling, condensed air that's the distinctive visual feature of a tornado - | | 22. Calm center of the hurricane - | | 23. Best suited place for tornado formation in the world | | True and False. | | 24The Coriolis effect "fuels" a tropical cyclone. | | 25The Saffir-Simpson Wind Scale is used to rank tornado intensity. | | 26A storm surge involves elevated water levels due to hurricane winds pushing water ahead of the storm. | | 27 Heat lightning is a form of cloud-to-cloud lightning. | | 28The eye wall of a hurricane can reach up to 9 miles high. | | 29 A tropical cyclone is considered to be at the tropical storm stage when its rotating speed is less than 39 mph. | | 30The stepped leader creates the brilliant flash of light that can be seen when lightning strikes. | | | | BONUS! | | 1. At least how many mph must a tropical cyclone rotate at to be considered a hurricane? | | 2. What term is used for a "hurricane" in the Philippines? | | 10.1 Intro to the Sola | <u>r System</u> | |--------------------------------|--| | | - the study of God's creation beyond our atmosphere rs study the motions of heavenly bodies and the laws that govern those motions | | | - the sun and all natural objects that orbit it | | 10.4 Asteroids, Come | ts and Meteoroids | | asteroid | - a stony or metallic object that is smaller than the planets and orbits the sun | | • | of <u>shapes</u> and <u>sizes</u>
<u>eros</u> → 21 miles long & 8 miles wide | | • | lda → orbited by a smaller asteroid known as its moon- <u>Dactyl</u> | | • | teroid has a specificorbit Most located in →asteroid belt a large ring of asteroids located between Mars and Jupiter Trojan Asteroids → two asteroid groups that travel in the same orbit as Jupiter near-earth asteroids (NEAs) — asteroids located in the inner solar system \$\cdot\ \text{Some will cross paths withearth} \\ 1explode high in Earth's atmosphere (once a month) with Earth (once every century) | | o <u>plane</u>
<u>orbit</u> | can pull asteroids out of orbit \rightarrow causing them to wander into the of another asteroid and collide | | • <u>Comet</u> | - an asteroid-sized object that is made of rock and frozen materials and | | forms a bright t
o In ancie | nt times thought to be intruders <u>invading</u> earth or a phenomenon | | o <u>T</u> y | 2. concluded it was a natural part of thesolar system | | o <u>Isaac</u>
planets | Newton → concluded comets are subject to same <u>orbital</u> laws as | | • (
• (| nond Haley astronomer correctly calculated the orbit of a comet seen in | | 1. Takes | y's Comet <u>76</u> years to orbit the sun | | | 3. Will return in February <u>2061</u> | |-----|---| | 0 | Comet components: | | | 1. <u>nucleus</u> - the heart of the comet which is 2/3 ice and 1/3 dust | | | 2. <u>coma</u> - the cloud of gas and dust around the nucleus | | | Formed when comet nears the <u>sun</u> causing the frozen nucleus to | | | vaporize and release the trapped dust | | | 3. <u>tail</u> - a highly reflective streamer of dust particles and gas emitted from | | | the comet | | | Formed as the comet travels closer to thesun | | | The <u>solar wind</u> (the stream of highly charged particles sent out by the | | | sun) causes the particles from the comet to drift away from the sun | | | 2 different colors | | | 1. <u>yellowish</u> tint – reaction of dust reflecting the sun | | | 2. <u>bluish</u> tint – reaction of gases with the solar wind | | | Always points <u>away</u> from the sun | | | → SO can't determine <u>directions</u> comet's moving by looking at its tail | | 0 | | | 0 | 2 Comet Classifications (based on their <u>periods</u>) | | | 1. <u>short-period</u> comet – has a period shorter than 200 years | | | 2. <u>long-period</u> comet – has a period longer than 200 years | | | | | | ■ EX <u>Eucke's Comet</u> - shortest recorded period → <u>3 years and 4 months</u> | | | Hale-Bopp Comet - longest recorded period → 4000 years | | 0 | | | | → also found in this belt are Pluto , Eris , and all other dwarf planets | | | (except <u>Ceres</u>) | | | | | Met | teoroid - small chunks of rock or metal in space | | | Size → range from microscopic speck of <u>dust</u> to giant <u>boulder</u> | | | Textures → coarse or smooth | | 0 | Composition → metallic or rocky | | 0 | Meteor a meteoroid that has entered the Earth's atmosphere | | | As it pushes thru Earth's atmosphere → begins to <u>burn</u> (adiabatic heating) | | | Smaller ones burn <u>completely</u>; larger ones only <u>partially</u> | | | Referred to as a "<u>shooting star</u>" | | 0 | Orbiting comets leave a <u>meteoroid stream</u> - a trail of meteoroid debris | | | → when earth passes thru it, it's a <u>meteor shower</u> - meteors falling faster | | | than normal (from tens to thousands may fall) | | 0 | Clusters of meteors located at → specific point on Earth's <u>orbit</u> | | | → SO Earth encounters same clusters at sametime every year | | 0 | | | | 3 Biggest Meteor Showers | | | 3 Biggest Meteor Showers 1. Quandrantids → (Jan 3-4) radiates from constellation Bootes | | | 3 Biggest Meteor Showers | | | 3 Biggest Meteor Showers 1. Quandrantids → (Jan 3-4) radiates from constellation Bootes | | 0 | 3 Biggest Meteor Showers 1. Quandrantids → (Jan 3-4) radiates from constellation Bootes 2. Perseids → (Aug 12-13) radiates from constellation Perseus 3. Geminids → (Dec 13-14) radiates from constellation Gemini Meteorites — meteors that land on the earth's surface | | 0 | 3 Biggest Meteor Showers 1. Quandrantids → (Jan 3-4) radiates from constellation Bootes 2. Perseids → (Aug 12-13) radiates from constellation Perseus 3. Geminids → (Dec 13-14) radiates from constellation Gemini Meteorites - meteors that land on the earth's surface ■ Tens of thousands hit earth every year | | 0 | 3 Biggest Meteor Showers 1. Quandrantids → (Jan 3-4) radiates from constellation Bootes 2. Perseids → (Aug 12-13) radiates from constellation Perseus 3. Geminids → (Dec 13-14) radiates from constellation Gemini Meteorites — meteors that land on the earth's surface Tens of thousands hit earth every year Only a few are large enough for scientists to collect and study | | 0 | 3 Biggest Meteor Showers 1. Quandrantids → (Jan 3-4) radiates from constellation Bootes 2. Perseids → (Aug 12-13) radiates from constellation Perseus 3. Geminids → (Dec 13-14) radiates from constellation Gemini Meteorites - meteors that land on the earth's surface ■ Tens of thousands hit earth every year | | 10.2 | Earth's | Moon_ | |---------|----------|---| | • | The | moon is Earth's only <u>satellite</u> - an object that revolves around another | | | object | an object that revolves around another | | | | | | • | Term ' | "" used for natural satellite of any planet | | | | Our moon never given a <u>name</u> | | | | Other planets' moons have <u>names</u> to distinguish them from one another | | | | | | • | Size 🔿 | 27 % of Earth's diameter | | | | | | • | Distan | ce from Earth → 238,900 miles | | | 0 | Being the closest heavenly body to earth → gives it the <u>appearance</u> of being larger | | | | than all heavenly bodies | | | 0 | Always looks larger at the <u>horizon</u> than when its high in the sky (an illusion) | | | | | | • | Moon' | s <u>gravity</u> → <u>weaker</u> than Earth's | | | | 100 lb person on earth → weighs 16.7 lbs on the moon | | | | | | • | Tempe | erature -> no <u>atmosphere</u> = no <u>greenhouse</u> effect | | | | Daytime → up to <u>260 degrees</u> | | | | Nighttime → fall to | | | | | | • | Moon' | s orbit of Earth: | | | 0 | Slighty <u>elliptical</u> | | | 0 | Moon's period = 29 days, 12 hours, 44 minutes = 1 lunar month | | | | Moon's <u>rotation</u> = moon's period to orbit Earth | | | | ❖ SO observers on Earth only ever see one side of the moon → called thenear side | | | | far side | | | | photographed it while orbiting the moon | | | | | | Surface | e of the | Moon | | • | Covere | d by → layer of dark gray <u>dust</u> and <u>rock</u> ; No <u>water</u> | | | | | | • | Moon' | s dark patches are immense <u>plains</u> | | | 0 | Called <u>maria</u> ("seas") | | | | WHY? Early astronomers thought they were bodies of <u>water</u> | | | 0 | Individual patches called marie, sinus ("bay") | | | | First moonwalk occurred on <u>Mare Tranquillitatis</u> ("Sea of Tranquility") | | | 0 | Now believed that maria → formed by massive craters filled in with <u>lava</u> | | | | · | | • | Moon i | s heavily <u>cratered</u> | | | 0 | Craters named for famous <u>philosophers</u> and <u>astronomers</u> | | | | The moon's <u>far side</u> is more heavily cratered than its <u>near side</u> | | | | BUT has fewer <u>maria</u> | | | 0 | rays -light-colored streaks radiating from each crater | Moon has many <u>mountains</u> (and ranges) Leibnitz range (at moon's South pole) is 6.8 miles (taller than Mt. Everest Phases of the Moon | • | Lunar month begins at → <u>new moon</u> - when the sunlit side of the moon is turned away from | |---|--| | | the earth and completely hidden from view | | • | <u>waxing</u> - gradually grow larger | | • | | | | | | Uncommon e | clipses | |------------|---------| |------------|---------| | | solar eclipse - occurs when a new moon moves directly between the sun and the earth and | |---|--| | | blocks part or all of the sun from view | | | Happen about <u>once</u> a year | | | ○ Because of Earth's size and position → can only be seen from specific <u>locations</u> | | • | Partial solar eclipse - occurs when the moon covers only a portion of the sun | | | Gives the sun a <u>crescent-shaped</u> appearance | | | EX <u>annular solar eclipse</u> - makes the sun appear as a ring of light | | | | | • | Total solar eclipse - occurs when the moon completely covers the normally visible portion of | | | the sun | | | ○ Because sun and moon must be lined up <u>perfectly</u> → only a <u>narrow</u> portion of | | | earth can experience it | | | totality occurs when moon completely covers the sun | | | | | | ❖ Observers on Earth experience → darkness similar to a moonless night | | | | | | | |) | lunar eclipse - occurs when full moon passes through the earth's shadow causing the | Creates a <u>copper</u> -colored moon Happens about <u>twice</u> a year Are visible anywhere on earth that it is <u>night</u> during the eclipse | • Be | nstellations ecause of our viewpoint on Earth, astronomers pretend the earth is surrounded by the <u>Celestial</u> ohere - an imaginary, giant, hollow sphere with the earth at the center and the sun, moon, stars and other planets on its inner surface | |------|---| | • At | any location on Earth, only <u>half</u> of the celestial sphere is visible at once | | • Th | ne other half is <u>blocked</u> by <u>the earth</u> itself | | | he <u>horizon</u> - the line that separates the visible portion of the celestial sphere form the part e cannot see | | • Th | o Observers location is <u>vertex</u> ; sides stretch out to <u>stars</u> o Size of <u>angle</u> between two stars is distance between them on the <u>celestial sphere</u> NOTE: 2 objects <u>close</u> on celestial sphere may be very <u>far</u> apart in space | | da | ue to earth's own <u>rotation</u> , the celestial sphere appears to rotate <u>around</u> the earth once a ly It appears to rotate on an axis through the <u>celestial poles</u> - points on the celestial sphere directly overhead at the earth's pole At north celestial pole is <u>Polaris</u> (called the <u>North Star</u>) At south celestial pole there is <u>no</u> star (but located by arrangement of stars around it) celestial equator <u>located directly above earth's equator</u> | | | which stars are <u>circumpolar</u> - ("circling the pole") always above the horizon stars never <u>rise</u> or <u>set</u> as seen at the poles the <u>latitude</u> of an observer determines what stars will be circumpolar from his vantage point EX 30° north latitude, the circle of stars within a radius of 30° from <u>Polaris</u> is circumpolar which stars are always <u>below</u> the horizon very star <u>rises</u> and <u>sets</u> as seen from the equator EX <u>Polaris</u> appears closer to the horizon at the equator in the northern hemisphere and cannot even be seen in the <u>southern hemisphere</u> | | • Mo | em on the Sphere ost objects on the celestial sphere remain in a <u>fixed</u> location as it appears to rotate around e earth | | | wever objects within the <u>solar system</u> move on the celestial sphere as their actual positions relative to earth change | | • | - the imaginary line on the celestial sky that marks the annual path of the sun | |---|--| | | At an angle of 23 degrees to the celestial <u>equator</u> | | | Crosses it twice a year: once in & once in September | | • | Due to monthly orbit around earth, <u>moon</u> appears to travel around celestial sphere once | | | every <u>lunar</u> month (29 1/2 days) | | | Always near <u>ecliptic</u> | | | | | • | Seven <u>planets</u> and their <u>moons</u> always visible on the celestial sphere | | | Their apparent motions more <u>complex</u> than sun and moon | | | Always near <u>ecliptic</u> | | • | zodiac - the imaginary band, extending for 8 degrees on either side of ecliptic, in which | | | the sun, moon, and the planets appear | | | | | Zones | n the Sky | | • | <u>constellations</u> - 88 zones that astronomers have divided the celestial sphere into | | | 47 named by ancient peoples (usually after people or objects from <u>mythology</u>) | | | Rest named by modern astronomers | | Includes any celestial objects <u>outside</u> the solar system that are contain | | | | constellation boundaries | | | Office leading stars in the constellation are connected by " <u>lines</u> " | | | Often do not actually look like object/person <u>named</u> after | | • | Asterisms - a small group of stars that are used to form a picture or represent an object | | _ | NOT to be confused with constellations | | | o Includes very few <u>stars</u> , most of which are usually bright | | | Big Dipperasterism is part of constellationUrsa Major | | | Some include stars from differentconstellations | | | EX <u>Summer Triangle</u> includes stars from 3 constellations | | | | | • | Not ALL constellations are <u>visible</u> from all latitudes | | | Constellations made of stars that are circumpolar (from observer's latitude) will always be | | | above the <u>horizon</u> (but not visible when <u>sun</u> is up) | | | Constellations made of stars that are never visible (from observer's location) will never be
visible | | | All other constellations will be above the horizon <u>part</u> of the time <u>BUT</u> not visible if too | | | close to <u>sun's</u> location on celestial sphere (sun's light blocks the view) | | | | | • | Constellations divided into <u>seasons</u> | | | Assigned to the season in which it is best seen in <u>early</u> evening | | | Best seen when it is directly <u>overhead</u> | | | | | The Sun – a great glowing mass of gases , mostly hydrogen and helium | | | | |--|--|--|--| | The most important <u>star</u> to us here on earth | | | | | • Parts of the Sun: | | | | | 1. <u>core</u> - the center of the sun | | | | | ○ Temperature → <u>27 million degrees</u> | | | | | <u>hydrogen</u> atoms there → fuse together to form <u>helium</u> | | | | | ○ RESULT → <u>atomic</u> energy is released creating <u>light</u> and <u>heat</u> | | | | | 2. <u>photosphere</u> - ("sphere of light") the <u>visible</u> part of the sun we see | | | | | covered in <u>granules</u> - ("bubbles") a convection cell in which superheated gas rises at its | | | | | center, cools, and sinks back beneath surface | | | | | each one is 600 miles across (a little larger than Texas) | | | | | has a 20 minute <u>lifespan</u> | | | | | super granules - larger convection cells that last 12-24 hours and 22,00 miles across | | | | | sunspots dark patches caused by the sun's magnetic field | | | | | cooler than the granules that surround them | | | | | ❖ Follow an <u>11</u> year cycle → as many as <u>200</u> sunspots in a cycle | | | | | 3chromosphere ("sphere of color") the lowest layer of the sun's atmosphere | | | | | \circ Temperature \rightarrow 11,000 degrees at bottom; 40,000 degrees at top | | | | | \circ Visible during solar <u>eclipse</u> $ o$ appears as bright reddish-pink <u>fringe</u> around the | | | | | blackened moon | | | | | Activity on the chromosphere: | | | | | spicules flamelike columns of gas continually erupting | | | | | solar flares - tremendous bursts of energy caused by magnetic stress within | | | | | sun | | | | | solar prominences - streams of dense gas erupting off the chromospheres | | | | | & returning in a loop-like fashion | | | | | 4. <u>corona</u> - ("crown") the outermost layer of the sun's atmosphere | | | | | a huge, hot blanket of gas up 6 million degrees | | | | | visible only during <u>total</u> eclipse | | | | | ○ punctured with <u>coronal holes</u> → the source of <u>solar winds</u> | | | | | The Sun's Path and the Seasons | | | | | equinox - ("equal night") the points at which the ecliptic intersects the celestial poles | | | | | vernal equinox - ("belonging to spring") sun crosses celestial equator from | | | | | south to north (around <u>March 21st</u> in northern hemisphere) | | | | | o <u>autumnal equinox</u> - sun crosses celestial equator from north to south (around | | | | | September 23rd in northern hemisphere) | | | | | Solstice - a point on the ecliptic midway between the two equinoxes | | | | | o summer solstice point - the sun reaches its farthest point north of the celestial | | | | | equator (about <u>June 21st</u>) | | | | | Winter Solstice point - the sun reaches its half way point between the autumnal equinox | | | | | and the vernal equinox (about <u>December 21st</u>) | | | | | Season on Earth - occur because of the 23.5 degrees tilt of Earth's axis | | | | | On Earth → 4 seasons are recognized | | | | | | | I. Spring | |-------|----------------|--| | | | 2. <u>summer</u> | | | | 3. autumn | | | | 4. winter | | | | | | • | Seaso | on are different in the Northern and Southern <u>hemispheres</u> | | • | | | | | | Spring in one = <u>fall</u> in the other | | | O | Winter in one = <u>summer</u> in the other | | _ | Fa ala | | | • | | season begins with an <u>equinox</u> or a <u>solstice</u> | | | 0 | In the Northern Hemisphere: | | | | Summer begins with <u>June Solstice</u> (93.65 days long) | | | | Autumn beings with <u>September Equinox</u> (89.85 days long) | | | | Winter begins with <u>December Solstice</u> (88.99 days long) | | | | Spring begins with <u>March Equinox</u> (92.75 days long) | | | 0 | | | | | ❖ During <u>perihelion</u> (closer to sun) → earth moves faster in orbit (winter) | | | | ❖ Duringaphelion (farther from sun)→ earth moves slower in orbit (summer) | | | | , | | • | In Nor | thern Hemisphere's <u>summer</u> -> Northern Hemisphere is tilted <u>towards</u> sun | | | | RESULT more direct <u>insolation</u> = <u>hotter</u> temperatures | | | _ | - Hotter temperatures | | • | In Nor | thern Hemisphero's winter - Northern Hemisphero is tilled | | • | | thern Hemisphere's <u>winter</u> → Northern Hemisphere is tilted <u>away</u> from sun | | | 0 | RESULT insolation at a <u>shallower</u> angle = <u>heats</u> less efficiently | | | | | | | | | | Stars | | | | • | <u>Stellar</u> | <u>measurements</u> : units to measure <u>distances</u> to stars | | | 0 | <u>light year</u> - the distance light travels in one year | | | | Proxima Centauri (Closest star to Earth other than sun) = 25 trillion miles = 4.2 light years | | | | Milky Way = 590 quadrillion miles = 100,000 light years (visible portion) | | | 0 | The distance to nearby stars → measure in <u>parallax</u> - the apparent change in the position | | | | of an object caused by the actual change in the position of the observer | | | | , and a second of the position of the observe, | | | 0 | Half the angle that the star appears to move on the celestial sphere when viewed from | | | • | opposite sides of Earth's orbit | | | | The larger the stellar parallax, the <u>closer</u> the star is to Earth | | | | • The larger the stellar parallax, the <u>closer</u> the star is to Earth | | | | poroson ("morelles consed") de cities en final c | | | 0 | <u>parasec</u> - ("parallax second") the distance of an object with a stellar parallax of 1 second | | | | of arc | | | | 1 parasec = 3.26 light years = 19.2 trillion miles | | | | | | • | Star M | <u>lagnitude</u> | | | 0 | apparent magnitude - the brightness of a star as it appears to an observer on earth | | | | ❖ Based on measurement system developed by Hipparchus → a Greek | | | | astronomer/mathematician | | | | ❖ The <u>lower</u> the apparent magnitude → the <u>brighter</u> the object | | | | First magnitude = 1 = Brightest stars | | | | U 177 (177) | | Sixth magnitude = 6 = Faintest | ixth magnitude = | : 6 | = Faintest stars | |--------------------------------|------------------|-----|------------------| |--------------------------------|------------------|-----|------------------| | | 0 | absolute magnitude parasecs (32.6 light years) fro | the apparent magnitude of a
m a star | star to an observer located 10 | |--------|--------|---|--|--| | | | Comparison of | | <u>absolute magnitude</u> | | | | Sun | -27 | 4.8 | | | | Sirius | -1.5 | 1.4 | | | | Betelgeuse | 0.4 | -5.6 | | • | Temp | erature and Color | | | | | - | Star's color depends on its su | rface <u>temperature</u> | | | | | (Cool) Deep Red | | | | | | (Warm) Yellow → | | | | | | (Hot) Pure White → | | | | | | (Hottest) Blue-white | 40,000 degrees | | | | 0 | Usually, the <u>hotter</u> <u>Betelgeuse</u> is <u>bulk</u> The brightest stars are | epends on its surface <u>tempera</u> a star's surface the <u>bright</u> a cooler star that outshine's sma
huge and <u>hot</u> like s far away from Earth as <u>Bete</u> | er it will be aller, hotter stars due to its sheer Rigel | | | 0 | | <u>ram</u> (H-R Diagram) - compare
ght produced (see chart on pg. | | | • | Star C | ategories (3 Main Groups) | | | | | | | bright (due to size) and c | onal stars | | | 0 | Red supergiants → <u>Betelge</u> | use and Antares | (largest) upiter would be <u>inside</u> them | | | 0 | Blue-white supergiants → R Produce more light | igel and <u>Deneb</u> than red s-g due to higher te | (hottest)
mps | | | 2. | Main Sequence - "average" | stars → brightness depends on | their temperature with varying | | proper | | | on a series of the t | aren temperature with varying | | . • | | Hot blue → _brightest_ | | | | | | | <u></u>
ature_as red s-g but less light (| Proxima Centauria | | | | Yellow → our <u>sun</u> | | Tronina Contactia | | | _ | | | | | | | | hot but dim because of their siz | e | | • | Star G | | | | | | 0 | | n in which two stars are bound t
"Dog Star" made up of <i>Sirius A</i> a
once every <u>50</u> years | | | | 0 | Optical double - a pair of | stars that are close on the color | stial snhere hut far anart in snaco | | <u>Algedi</u> "star" in Capricorn → actually 2 stars about 580 light-years apart | |---| | Open Clusters - loose asymmetrical clumps containing ten to hundreds of stars Pleiades in constellation Taurus | | Stellar Explosions | | Nova occurs when a star suddenly flares up to many times its original brightness Will remain bright for some time then return to original magnitude So far, only observed in white dwarf stars (possible hydrogen gas explosion from larger star) | | Supernova an explosion of a star both catastrophic and violent ♣ A once faint star develops into brightest star → light then fades until all that remains is hot, dense core of star surrounded by expanding _ nebula a cloud of interstellar gas and dust ♣ Neutron Star the hot core of star left over after a supernova _ Pulsar a rapidly rotating neutron star that emits directional beams of radio waves ▶ Crab Nebula a pulsar (remnant of a supernova seen in A.D. 1054) know for releasing pulses of visible light | | Galaxies | | galaxy - a massive star system containing millions to billions of stars as well as gas and dust | | Milky Way - the galaxy in which we live, containing over 400 billion stars, including our own sun Until 1900s, thought to be the <u>only</u> galaxy Astronomers estimate <u>120</u> billion galaxies in the observable universe | | Galaxies not spread at random throughout universe → but grouped together in <u>orderly</u>, complex | | structures clusters - smallest of organized galaxies | | Local Groups - a cluster of 30 galaxies including the Milky Way | | Largest galaxy in this group → <u>Andromeda Galaxy</u> (located in constellation <u>Andromeda</u>) Milky way is slightly <u>smaller</u> than it Large Magellanic Cloud and Small Magellanic Cloud → 2 <u>closest</u> galaxies to Milky Way | | Galaxy Shapes | | Spiral Galaxies - have a central nucleus resembling a flattened ball to which are attached long curved arms | | Resembles a <u>pinwheel</u> spinning through space | | barred spiral galaxy - a particular type of spiral galaxy in which the spiral arms attach to a
straight "bar" that runs through the nucleus of the galaxy | | Milky Way believed to be a barred spiral galaxy | | ❖ Our <u>sun</u> → located toward edge of galaxy in one of its spiral arms | | In center of galaxy → constellation <u>Sagittarius</u> and within it Sagittarius A*: believed to be a <u>black hole</u> - an object so massive and dense that not even light can escape its gravity | |--| | 2. Elliptical galaxies - resemble eggs or footballs O Less <u>structured</u> | | 3. <u>Lenticular galaxies</u> - flat with a bulging nucleus and has a "solid" disk instead of spiral arms O Less <u>structural</u> | | 4. <u>Irregular galaxies</u> - composed of stars clumped together in no definite shape o EX Large Magellanic Cloud and Small Magellanic Cloud | | | | After reading all the metast (managed to several environment) and the several environment of sever | | After reading all the notes! (no need to copy them into a notebook). Go do the section reviews in your textbooks for | | 10.2 | | 10.4 | | 10.5 | | 10.6 | | Don't do the thought provokers. Just the numbered questionsS | | |